

ELIZADE UNIVERSITY ILARA MOKIN, ONDO STATE

FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING


SECOND SEME!

COURSE TITLE: POWER SYSTEMS ENGINEERING

COURSE CODE: EEE 528

EXAMINATION DATE: 18th July, 2109.

COURSE LECTURER: DR K. O. TEMIKOTAN

TIME ALLOWED: 3 HOURS

INSTRUCTION

- ANSWER ANY FIVE QUESTIONS
- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.
- 3. YOU ARE NOT ALLOWED TO BORROW ANY WRITING MATERIALS AND CALCULATORS DURING THE EXAMINATION.
- 4. SMART WATCHES ARE NOT ALLOWED IN THE EXMINATION HALL

QUESTION ONE

A single circuit transmission line delivering a load of 50 MVA at 110 kV and p.f. 0.8 lagging: Determine; (i) sending end voltage (ii) sending end current (iii) sending end power (iv) efficiency of transmission. Given $A = D = 0.98 \angle 3^{\circ}$; $B = 110 \angle 75^{\circ}$ ohm; $C = 0.0005 \angle 80^{\circ}$ Siemen. (12 MARKS)

OUESTION TWO

- a. What are the causes of voltage variation in consumers' premises? (2 MARKS)
- b. What methods are available for ensuring that system voltages are within approved limits? (7
- c. Discuss the advantages and disadvantages of each method. (3 MARKS)

QUESTION THREE

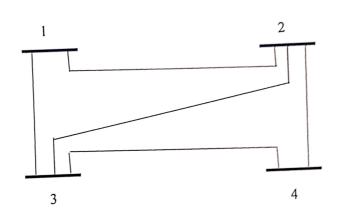


Figure Q 3: Single Line Diagram for Question Three

Determine the \mathbf{Y}_{bus} of the network in Figure Q 3 given that the following impedances of the lines.

Bus Code	Line Impedances
1 - 2	0.025 + j0.10
1 - 3	0.10 + j0.40
2 - 3	0.02 + j0.08
2 - 4	0.04 + j0.18
3 – 4	0.05 + j0.0.2

Neglect the shunt admittances of the buses. (12 MARKS)

QUESTION FOUR

- a. State five advantages of using the per unit system in network analysis. (5 MARKS)
- b. A 90 MVA, 11kV 3-phase generator has a reactance of 25%. The generator supplies two motors through transformers and transmission line as shown in Figure Q 4. The transformer T_1 is a threephase 100 MVA, 10/132 kV, and has a reactance of 6%. The transformer T₂ is composed of three single phase units each rated at 30 MVA, 66/10 kV with 5% reactance. The connections of T1 and T_2 are as shown. The motors are rated 50 MVA both 10 kV and 20% reactance. Taking the generator

rating as base, draw the reactance diagram and indicate the reactances in per unit. The reactance of the line is 100Ω . (7 MARKS)

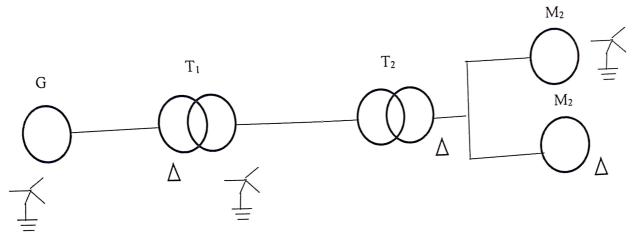


Figure Q 4: Diagram for Question 4

QUESTION FIVE

a. What are symmetrical components?

b. Complete the following table given that the operator $a = 1 \angle 120^0 = 1e^{j2\pi/3} = -0.5 + j0.8660$

	1000	$i2\pi/3$	$0.5 \pm i0.8660$
a	1∠120°	$1e^{j2\pi/3}$	-0.5 + j0.8660
a^2			
a^3			
a^4			
$1 + a^2$			
$1 + a + a^2$			

The line currents in a 3-phase system are $I_a = 5\angle 60^0 A$; $I_b = 5\angle -60^0 A$ and $I_c = 0$.

Find the symmetrical components.

QUESTION SIX

- a. Express the swing equation in terms of the angular momentum, M power angle δ , the input and the output power $P_{\rm m}$ and $P_{\rm e}$ respectively.
- b. A four-pole steam turbine-generator unit is rated 13.2 kV, 50 Hz and 100 MW at 0.8 pf. If the moment of inertia is 36,000 kg-m²; Calculate;
 - The kinetic energy in MJ at rated speed, i.
 - The inertia constant H. ii.
 - The inertia constant M in MJ-s per electrical degree. iii.
 - M in per unit on 100 MVA base. iv.

QUESTION SEVEN

a. A 5-ampere, 3-second overcurrent relay having a current setting of 125% and a time setting multiplier (PSM) of 0·6 is connected through a 400/5 current transformer to a supply circuit.

Determine the time of operation when the circuit carries a fault current of 4000 A. Use the curve shown in Figure Q7. (5 MARKS)

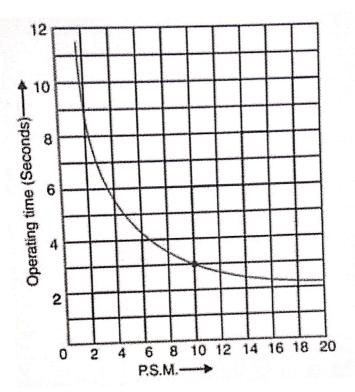


Figure Q7: Time/P.S.M. Curve of the Relay

- b. What may happen to a power system if the system parameters of a power system go out of system allowed limits? (1 MARK)
- c. State the system allowed limits for voltage and frequency at the transmission level in the Nigeria power grid. (1 MARK)
- d. What steps can be taken to ensure that the system remains within the allowed limits. (5 MARKS)